ICERM
Lattice pomt counting and homegeneous dyhamiss
Part II

Lattice points in semi simple groups
G-seni-sinte group
$P \leq G$ laclice (irreducible)
$B_{T} \subseteq G$ hike growing sets
Cool: Estimate \# C $\cap B_{T}$
Example:

$$
\begin{aligned}
& G=S L_{2}(\mathbb{R}) \quad \Gamma=S L_{2}(\mathbb{R}) \\
& B_{T}=\{g c G \mid \quad\|g\| \leq T\} \\
& \|g\|^{2}=t-\left(g g^{t} g\right)=a^{2}+L^{2}+C^{2}+d^{2} \\
& g=\binom{a b}{c d}, ~ V o \|\left(B_{T}\right)=n T^{2}
\end{aligned}
$$

Note: Ideulirying $\left.s L_{2}|\mathbb{R}| / s O_{2}\right)=\mid H$
gHgi, $B_{T} i=\left|z \leqslant|H| d\left(z_{i}\right)<R_{T}\right\rangle$ $2 \cosh \left(R_{T}\right)=T^{2}$

Gechetus approach
cove- each $\gamma \in P \cap B_{T}$ by fundamental domains: γF_{p}
problems

1) For $\Gamma=s L_{2}(R)$ place is hot compact
2) For Γ co-sompact
say $F_{r} \leqslant B_{r}$ for $<\lambda 1$

$$
\gamma \in B_{T} g \in F_{p} \Rightarrow \gamma g \in B_{c T}
$$

bat

$$
\begin{aligned}
& V o l\left(B_{<T}-B_{T}\right) \simeq V \sigma l\left(B_{c}\right) \\
& {\left[\begin{array}{l}
\text { compare to } G マ R \\
B_{T}+v \subseteq B_{T+\varepsilon}
\end{array}\right]}
\end{aligned}
$$

use dynanics
Main toul: Mixing
Thin [Howe-Moove]
G s.s gp. $\quad \Gamma \leq G$ ur lactice

$$
\Psi_{1} \Phi G L^{2}(D \mid G)
$$

$$
\int_{\rho 1 \sigma} \Psi(x h) \Phi(x) d x \xrightarrow{h \rightarrow \infty} \frac{(S \psi) \cdot(S \Phi)}{V_{0} \ell(p(\sigma)}
$$

consequences:

1) For $u \leq G$ open. tranolate Wh equidiolributes in plG as $h \longrightarrow \infty$
2) Fow h_{t} one parameler group for a.e $\neq a \beta^{t}$ oublt $\int x h_{t}| | t \mid \leq T ?$ equidustubules in $p l G$
counting via equiliothibulich
Let U_{s} vial neighborhood of I Let $\varphi_{\delta}(g)$ supported on U_{δ} and $\Phi_{\delta}(x)=\sum_{\gamma \in \Gamma} \varphi_{\delta}\left(\gamma_{j}\right) \in L^{2}\left(\rho_{\rho} \mid G\right)$
(Assume $u_{\sigma} \subseteq F_{\Gamma}$)
Compare $\int_{B_{T}} \Phi_{\delta}(g) d y$
in the ways

$$
\text { I) } \begin{aligned}
& \int_{B_{T}} \Phi_{f}(g) d y=\sum_{\gamma<p} \int_{G} \chi_{B T}(s) \varphi_{f}(\gamma) d y \\
= & \sum_{\gamma<p} \int_{\sigma} x_{B_{T}}(\gamma g) \varphi_{j}(g) d g
\end{aligned}
$$

Regularity assumption:
Let $\quad B_{T}^{ \pm}=B_{T(1 \pm \delta)}$
$\frac{\text { Assume }}{g} \quad \forall g \in B_{T}, h \in U_{\delta}$

$$
g h \in B_{T}^{+}
$$

with this assumption

$$
\left|B_{T}^{-} \cap \rho\right| \leq \int_{B_{T}} \Phi_{\delta}(y) d y \leq\left|B_{T}^{+} \cap \Gamma\right|
$$

Or

$$
\int_{B_{T}^{-}} \Phi(y) d g \leq \mid P \cap B-1 \leq \int_{B_{T}^{+}} \Phi(g) d g
$$

Assume B_{T} disintegrates as union of long fibers each is equideatrebuiled in $\Gamma!G$

Apply this to $G=S L_{2}(\mathbb{R})$ and B_{T}-noun foals
Coordinates

$$
\begin{aligned}
& g=k_{\sigma} a_{t} k_{\sigma^{\prime}}
\end{aligned} k_{\sigma}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin a & \cos \sigma
\end{array}\right) .
$$

Haar heasare: $d g=\sinh (t) d t d o d a^{\prime}$
Now n $\|g\|^{2}=2 \cosh (t)$

$$
\begin{gathered}
B_{T}=\left\{k_{a} a_{t} k_{a l} \mid 0 \leq t \leq R_{T}\right\} \\
2 \cosh \left|R_{T}\right|=T^{2} \\
\operatorname{Vol}\left|B_{T}\right|=\pi T^{2}
\end{gathered}
$$

Tiro option for fibers:

1) $f \times a \quad\left[k_{\sigma} a_{t} \mid 0 \leqslant t I R_{T}\right\}$
2) $F\left(x \in \quad\left\{\left|k_{0} a_{t}\right| 0 \leq 0 \leq 2 \pi\right\}\right.$

We use and option and show:
The: for $\psi \in C(p \mid \sigma)$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(k_{0} a^{t}\right) d \theta \xrightarrow{t \rightarrow \infty} \frac{\int_{n / 6} \psi /(s) d y}{V_{d} R(n / \sigma)} \\
& \text { cor: }\left|\cap \cap B_{T}\right| \sim \frac{V_{0 l\left(B_{T}\right)}^{\left.V_{0 l \mid} \mid \sigma\right)}}{V_{0} \mid}
\end{aligned}
$$

Note: What we expected from geometrk argument

Proof of equidnatribution
Idea: use minting: For open 4
ult equidistributes
Problem: Set \{ k_{o} lo :0.52n\} ~ hot open
suluticu: Thicken this set
(H) but only thedren in directions that contract
coordinates

$$
\begin{aligned}
& g=k_{0} a_{s} n_{x} \quad n_{x}=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \\
& d y=e^{5} d s d \sigma d x
\end{aligned}
$$

Key observation

$$
\begin{aligned}
& k_{0} a_{s} n_{x} a_{t}=k_{\sigma} a_{t} a_{s} n_{x e} e^{t} \\
& \text { so if } s, x \min \text {, } a_{s} n_{x} \in u_{\delta}
\end{aligned}
$$

then we have

$$
k_{\sigma} q_{s} h_{x} q_{t}=k_{\sigma} q_{t} h \text { for } h \in u_{s}
$$

In this case

$$
\begin{aligned}
\frac{1}{2 n} \int_{0}^{2 n} \psi\left(k_{0} a_{t}\right) d t & =\frac{1}{2 n} \int_{u}^{n} \psi\left(k_{0} a_{5} n_{x} x_{t}\right) d d \\
\text { as } \delta \rightarrow 0 & +0(1)
\end{aligned}
$$

Let $\left.\varphi_{\delta}\left(k_{0} a_{s} n_{x}\right)=\varphi_{\delta} \mid a_{s} n_{x}\right)$ mean one and supported in $k H_{\delta}$

Writing $g=k_{0} a_{s} h_{\alpha}$ we get

$$
\left.\int_{G} \psi_{\left(g a_{t}\right)} \varphi_{f(g)}\right) d g=\frac{1}{\partial n} \int_{j}^{2 n} \psi_{\left(k_{c} a_{t}\right)} d \theta
$$

on other hand

$$
\begin{aligned}
& \int_{G} \psi_{\left(g a_{t}\right)} \varphi_{(g)} d y=\int_{\Gamma G} \psi_{\left(g a_{t}\right)} \Psi_{j}(g) d y \\
& \xrightarrow{t \rightarrow \infty} \frac{\left(S_{\rho / 6} \psi\right)}{V_{0 l}(\Gamma \mid \sigma)}
\end{aligned}
$$

Taking $t \rightarrow \infty$ and $\delta \rightarrow 0$ concludes the proof.

Nates.

1) Mixing can be made effective so also equidustribution and counting estimates
2) Simple modification of proof shows

$$
\frac{1}{I} \int_{I} \psi\left(k_{a} a_{t}\right) d \theta \rightarrow \frac{S \psi d g}{U_{0 \ell(\rho \mid \sigma)}}
$$

(exp)
can asethls to count in sectors
3) The same equidiscrubution result can be used to estimate $\left.\mid P \wedge \bar{B}_{T}\right)$ with

$$
\widetilde{B}_{T}^{\prime}=\left\{k_{0} a^{n} n_{x}\left|t \leq 2 \lg (T),|x|=\frac{1}{2}\right\}\right.
$$

exp: Acton of G on \mathbb{R}^{2} $g H g\binom{1}{0}$

$$
\widetilde{B}_{T}\binom{1}{u}=\left\{v \in \mathbb{R}^{2} \mid\|v\| \leq T\right\}
$$

Whet counting vesutiato we get in \mathbb{R}^{2} ?

